skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gill, Waris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Not AvailaIn Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm. This collaborative yet privacy-preserving training comes at a cost. FL developers face significant challenges in attributing global model predictions to specific clients. Localizing responsible clients is a crucial step towards (a) excluding clients primarily responsible for incorrect predictions and (b) encouraging clients who contributed high-quality models to continue participating in the future. Existing ML debugging approaches are inherently inapplicable as they are designed for single-model, centralized training. We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for a global model's prediction by tracking the flow of information from individual clients to the global model. Since inference on different inputs activates a different set of neurons of the global model, TraceFL dynamically quantifies the significance of the global model's neurons in a given prediction, identifying the most crucial neurons in the global model. It then maps them to the corresponding neurons in every participating client to determine each client's contribution, ultimately localizing the responsible client. We evaluate TraceFL on six datasets, including two real-world medical imaging datasets and four neural networks, including advanced models such as GPT. TraceFL achieves 99% accuracy in localizing the responsible client in FL tasks spanning both image and text classification tasks. At a time when state-of-the-art ML debugging approaches are mostly domain-specific (e.g., image classification only), TraceFL is the first technique to enable highly accurate automated reasoning across a wide range of FL applications.ble 
    more » « less
    Free, publicly-accessible full text available April 26, 2026
  2. Federated Learning (FL) is a privacy-preserving distributed machine learning technique that enables individual clients (e.g., user participants, edge devices, or organizations) to train a model on their local data in a secure environment and then share the trained model with an aggregator to build a global model collaboratively. In this work, we propose FedDefender, a defense mechanism against targeted poisoning attacks in FL by leveraging differential testing. FedDefender first applies differential testing on clients’ models using a synthetic input. Instead of comparing the output (predicted label), which is unavailable for synthetic input, FedDefender fingerprints the neuron activations of clients’ models to identify a potentially malicious client containing a backdoor. We evaluate FedDefender using MNIST and FashionMNIST datasets with 20 and 30 clients, and our results demonstrate that FedDefender effectively mitigates such attacks, reducing the attack success rate (ASR) to 10% without deteriorating the global model performance. 
    more » « less
  3. In Federated Learning (FL), clients independently train local models and share them with a central aggregator to build a global model. Impermissibility to access clients' data and collaborative training make FL appealing for applications with data-privacy concerns, such as medical imaging. However, these FL characteristics pose unprecedented challenges for debugging. When a global model's performance deteriorates, identifying the responsible rounds and clients is a major pain point. Developers resort to trial-and-error debugging with subsets of clients, hoping to increase the global model's accuracy or let future FL rounds retune the model, which are time-consuming and costly. We design a systematic fault localization framework, Fedde-bug,that advances the FL debugging on two novel fronts. First, Feddebug enables interactive debugging of realtime collaborative training in FL by leveraging record and replay techniques to construct a simulation that mirrors live FL. Feddebug'sbreakpoint can help inspect an FL state (round, client, and global model) and move between rounds and clients' models seam-lessly, enabling a fine-grained step-by-step inspection. Second, Feddebug automatically identifies the client(s) responsible for lowering the global model's performance without any testing data and labels-both are essential for existing debugging techniques. Feddebug's strengths come from adapting differential testing in conjunction with neuron activations to determine the client(s) deviating from normal behavior. Feddebug achieves 100% accuracy in finding a single faulty client and 90.3% accuracy in finding multiple faulty clients. Feddebug's interactive de-bugging incurs 1.2% overhead during training, while it localizes a faulty client in only 2.1% of a round's training time. With FedDebug,we bring effective debugging practices to federated learning, improving the quality and productivity of FL application developers. 
    more » « less